Formalization of optimization algorithms

2. Some examples🔗

In this page, we present two examples of algorithms encompassed by our framework: the Pure Random Search (PRS) and the LIPO algorithms. The formalization of these algorithms in our framework relies on the definition of the initial probability measure and the Markov kernels that define how to sample the next element based on the previous ones.

The Pure Random Search (PRS) algorithm is a simple stochastic iterative global optimization algorithm that samples uniformly from the search space at each iteration. It can be represented in our framework as follows:

noncomputable def PRS : Algorithm α β where ν := uniform univ prob_measure := uniform_is_prob_measure (α:Type u_1β:Type u_2inst✝³:MeasureSpace αinst✝²:IsFiniteMeasure inst✝¹:NeZero inst✝:MeasurableSpace β univ 0 All goals completed! 🐙) kernel_iter _ := Kernel.const _ (uniform (univ) : Measure α) markov_kernel _ := fun _ => uniform_is_prob_measure (α:Type u_1β:Type u_2inst✝³:MeasureSpace αinst✝²:IsFiniteMeasure inst✝¹:NeZero inst✝:MeasurableSpace βx✝¹:x✝:prod_iter_image α β x✝¹ univ 0 All goals completed! 🐙)

2.2. LIPO🔗

The LIPO algorithm has been introduced in  (Malherbe and Vayatis, 2017)Cédric Malherbe and Nicolas Vayatis, 2017. “Global optimization of Lipschitz functions”. In International conference on machine learning. and is a more sophisticated stochastic iterative global optimization algorithm made for Lipschitz functions. It uses the Lipschitz constant to adaptively construct an upper bound that guides the sampling of the search space. More formally, at each iteration, LIPO samples uniformly from the set of potential maximizers defined as \left \{ x \in \alpha \; \middle| \; \max_{1 \le i \le n} f(X_i) \le \min_{1 \le i \le n} f(X_i) + \kappa \|X_i - x \|_2 \right\}, where \alpha is a measurable subset of \mathbb{R}^d with finite and non-zero measure and \kappa is the Lipschitz constant of the function f : \alpha \to \mathbb{R}.

It can be represented in our framework as follows:

variable {d : } {κ : ℝ≥0} {α : Set (ℝᵈ d)} (mes_α : MeasurableSet α) (mα₀ : α 0) (mα₁ : α )noncomputable def LIPO : Algorithm α where ν := uniform Set.univ prob_measure := d:κ:ℝ≥0α:Set (ℝᵈ d)mes_α:MeasurableSet αmα₀: α 0mα₁: α h: (n : ) (data : prod_iter_image α n), (potential_max data κ) 0IsProbabilityMeasure (uniform univ) d:κ:ℝ≥0α:Set (ℝᵈ d)mes_α:MeasurableSet αmα₀: α 0mα₁: α h: (n : ) (data : prod_iter_image α n), (potential_max data κ) 0this:IsFiniteMeasure := i₁ mes_α mα₁IsProbabilityMeasure (uniform univ) d:κ:ℝ≥0α:Set (ℝᵈ d)mes_α:MeasurableSet αmα₀: α 0mα₁: α h: (n : ) (data : prod_iter_image α n), (potential_max data κ) 0this:IsFiniteMeasure := i₁ mes_α mα₁ univ 0 rwa [Measure.Subtype.volume_univ mes_α.nullMeasurableSetd:κ:ℝ≥0α:Set (ℝᵈ d)mes_α:MeasurableSet αmα₀: α 0mα₁: α h: (n : ) (data : prod_iter_image α n), (potential_max data κ) 0this:IsFiniteMeasure := i₁ mes_α mα₁ α 0 kernel_iter _ := potential_max_kernel mes_α mα₁ κ markov_kernel n := d:κ:ℝ≥0α:Set (ℝᵈ d)mes_α:MeasurableSet αmα₀: α 0mα₁: α h: (n : ) (data : prod_iter_image α n), (potential_max data κ) 0n:IsMarkovKernel (potential_max_kernel mes_α mα₁ κ) d:κ:ℝ≥0α:Set (ℝᵈ d)mes_α:MeasurableSet αmα₀: α 0mα₁: α h: (n : ) (data : prod_iter_image α n), (potential_max data κ) 0n:data:prod_iter_image α nIsProbabilityMeasure ((potential_max_kernel mes_α mα₁ κ) data) d:κ:ℝ≥0α:Set (ℝᵈ d)mes_α:MeasurableSet αmα₀: α 0mα₁: α h: (n : ) (data : prod_iter_image α n), (potential_max data κ) 0n:data:prod_iter_image α nthis:IsFiniteMeasure := i₁ mes_α mα₁IsProbabilityMeasure ((potential_max_kernel mes_α mα₁ κ) data) All goals completed! 🐙