Consistency of global optimization algorithms

4. Indistinguishable function

Given a Lipschitz function f on a compact domain \alpha, a positive real number \varepsilon, and an element of \alpha c, we construct a new Lipschitz function \tilde{f} such that f = \tilde{f} outside of the ball centered at c with radius \varepsilon/2, and such that the maximum value of \tilde{f} is inside this ball and is strictly greater than the maximum value of f.

4.1. Expression

We define the function \tilde{f} as follows: \tilde{f}(x) \triangleq \begin{cases} f (x) + 2 \cdot \left(1 - \frac{\|x - c\|}{\varepsilon / 2} \right) \cdot (\max_{x \in \alpha} f(x) - \min_{x \in \alpha} f(x) + 1) & \text{if } x \in B(c, \varepsilon / 2) \\ f (x) & \text{otherwise} \end{cases}

Here is a visualization of this expression using the reverse Ackley function.

noncomputable def f_tilde (ε : ) (x : α) := if x ball c (ε/2) then f x + 2 * ((1 - (dist x c) / (ε/2)) * (fmax hf - fmin hf + 1)) else f x

4.2. Lipschitz property

We show that \tilde{f} is Lipschitz continuous. The proof relies on the fact that \tilde{f} is a cases function of two Lipschitz functions that are equal on the frontier of the ball B(c, \varepsilon / 2).

lemma f_tilde_lipschitz {ε : } (ε_pos : 0 < ε) : Lipschitz (hf.f_tilde c ε) := α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εLipschitz (hf.f_tilde c ε) α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < ε a sphere c (ε / 2), 2 * ((1 - dist a c / (ε / 2)) * (fmax hf - fmin hf + 1)) = 0α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εLipschitz fun a => 2 * ((1 - dist a c / (ε / 2)) * (fmax hf - fmin hf + 1)) α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < ε a sphere c (ε / 2), 2 * ((1 - dist a c / (ε / 2)) * (fmax hf - fmin hf + 1)) = 0 α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εa:αha:a sphere c (ε / 2)2 * ((1 - dist a c / (ε / 2)) * (fmax hf - fmin hf + 1)) = 0 α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εa:αha:a sphere c (ε / 2)2 * ((1 - ε / 2 / (ε / 2)) * (fmax hf - fmin hf + 1)) = 0 suffices h : ε / 2 / (ε / 2) = 1 α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εa:αha:a sphere c (ε / 2)h:ε / 2 / (ε / 2) = 1 := ?m.147332 * ((1 - ε / 2 / (ε / 2)) * (fmax hf - fmin hf + 1)) = 0 α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εa:αha:a sphere c (ε / 2)h:ε / 2 / (ε / 2) = 1 := ?m.147332 * ((1 - 1) * (fmax hf - fmin hf + 1)) = 0 All goals completed! 🐙 All goals completed! 🐙 α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εLipschitz fun a => 2 * ((1 - dist a c / (ε / 2)) * (fmax hf - fmin hf + 1)) α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εLipschitz fun a => dist a c / (ε / 2) All goals completed! 🐙

4.3. Maximum of \tilde{f}

One can show that \tilde{f}(c) is strictly greater than the maximum of f (see max_f_lt_f_tilde_c). Hence, by transitivity, the maximum of \tilde{f} is strictly greater than the maximum of f.

lemma max_f_lt_max_f_tilde {ε : } (ε_pos : 0 < ε) : fmax hf < fmax (hf.f_tilde_lipschitz c ε_pos) := suffices h : fmax hf < hf.f_tilde c ε c from lt_of_le_of_lt' (compact_argmax_apply (hf.f_tilde_lipschitz c ε_pos).continuous c) h hf.max_f_lt_f_tilde_c c ε_pos

Finally, we show that the maximum of \tilde{f} is attained in the ball B(c, \varepsilon / 2).

lemma max_f_tilde_in_ball {ε : } (ε_pos : 0 < ε) : compact_argmax (hf.f_tilde_lipschitz c ε_pos).continuous ball c (ε/2) := α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εcompact_argmax ball c (ε / 2) α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εx':α := compact_argmax x' ball c (ε / 2) α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εx':α := compact_argmax h_contra:x' ball c (ε / 2)False have : fmax (hf.f_tilde_lipschitz c ε_pos) fmax hf := α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εcompact_argmax ball c (ε / 2) α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εx':α := compact_argmax h_contra:x' ball c (ε / 2)f (compact_argmax ) f (compact_argmax ) All goals completed! 🐙 α:Type u_1inst✝³:NormedAddCommGroup αinst✝²:CompactSpace αinst✝¹:Nonempty αf:α hf:Lipschitz fc:αinst✝:NormedSpace αε:ε_pos:0 < εx':α := compact_argmax h_contra:x' ball c (ε / 2)this✝:fmax fmax hf := Eq.mpr (id (congrArg (fun x => x f (compact_argmax (fmax._proof_1 hf))) (f_tilde_apply_out hf c h_contra))) (compact_argmax_apply (continuous hf) x')this:fmax hf < fmax := max_f_lt_max_f_tilde hf c ε_posFalse All goals completed! 🐙