PSO¶
- class gob.optimizers.PSO.PSO(bounds, n_particles=200, iter=1000, dt=0.01, omega=0.7, c2=2, beta=100000.0, alpha=1, batch_size=0, verbose=False)¶
Bases:
Optimizer
Interface for the social only PSO optimizer.
- Parameters:
bounds (ndarray) – The bounds of the search space.
n_particles (int) – The number of particles.
iter (int) – The number of iterations.
dt (float) – The time step.
omega (float) – The inertia weight.
c2 (float) – The cognitive coefficient.
beta (float) – The inverse temperature for using a Gibbs measure to select the global best instead of the argmin. Default is 0 (no Gibbs measure).
alpha (float) – The coefficient to decrease the step size.
batch_size (int) – The batch size for the mini-batch optimization. If 0, no mini-batch optimization is used.
verbose (bool) – Whether to print information about the optimization process.
- minimize(f)¶
Minimize a function using the optimizer.
- Parameters:
f (Function) – The objective function.
- Returns:
The minimum point and the minimum value.
- Return type:
pair
- set_stop_criterion(stop_criterion)¶
Set a stop criterion for the optimizer.
- Parameters:
stop_criterion (float) – The stop criterion.